

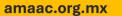
Asociación Mexicana del Asfalto, A.C.

> PAVIMENTANDO EL CAMINO HACIAUN FUTURO SOSTENIBLE

SEMINARIO INTERNACIONAL DEL ASFALTO

9 al 11 de Octubre, 2024, Monterrey, N.L.

Intelligent Compaction Jan Frománek



Jan Formánek Commercial & Product management

Jan.formanek@ammann.com

@AMAACmx 🚹

- The highly demanding situation in the construction industry is increasing the needs for Quality → Quality means Control → and Control means Measurement
- The answer is Intelligent Compaction.

Basic CCC Systems

- Relative measurement (%)
- System consists of:
 - Compacted material Stiffness measurement

Advanced CCC Systems

- Absolute value measurement (MN/m)
- System is combination of:
 - Compacted material Stiffness measurement
 - Operators Guidance
 - or Automatic Vibration Regulation

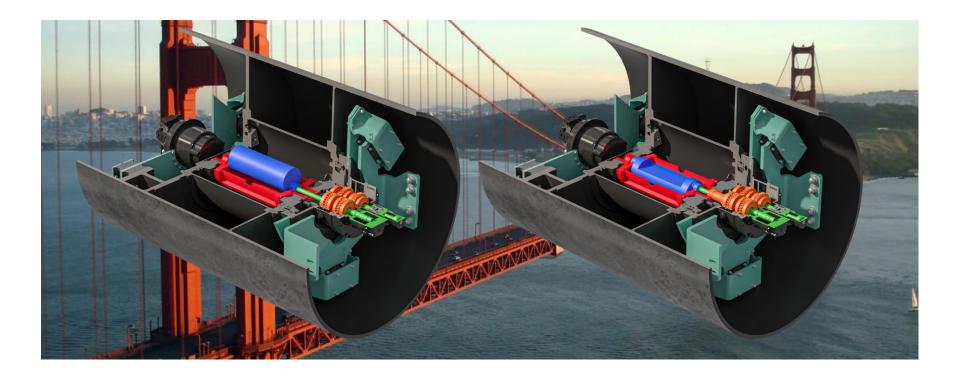
• Where to use Relative vs. Absolute measurement:

Pass	Jobsite with Relative measurement	Measured value %	Jobsite with Absolute measurement	Measured value kB
1.	SDR 7t with Relative measurement	60%	SDR 7t with Relative measurement	70 MN/m
2.	SDR 7t with Relative measurement	70%	SDR 7t with Absolute measurement	80 MN/m
3.	SDR 7t with Relative measurement	75%	SDR 7t with Absolute measurement	85 MN/m
4.	SDR 7t with Relative measurement	78%	SDR 7t with Absolute measurement	88 MN/m
5.	SDR 7t with Relative measurement	79%	SDR 7t with Absolute measurement	89 MN/m
6.	SDR 7t with Relative measurement	78%	SDR 7t with Absolute measurement	89 MN/m
7.	SDR 11t with Relative measurement	40%	SDR 11t with Absolute measurement	95 MN/m
8.	SDR 11t with Relative measurement	50%	SDR 7t with Absolute measurement	105 MN/m
9.	SDR 11t with Relative measurement	58%	SDR 7t with Absolute measurement	110 MN/m
10.	SDR 11t with Relative measurement	62%	SDR 7t with Absolute measurement	113 MN/m
11.	SDR 11t with Relative measurement	65%	SDR 7t with Absolute measurement	115 MN/m
12.	SDR 11t with Relative measurement	65%	SDR 7t with Absolute measurement	115 MN/m

Relative measurement is good for Progress check, but how do you set Compaction target to be achieved by the operator independently from machine Type/Size?

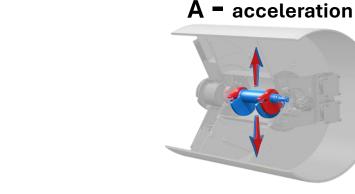
- Affordable Compaction progress indication
- Easy Quality control with no additional System setting
- Jobsite efficiency improvement:
 - Time & Fuel economy
 - CO₂ reduction
 - Re-work costs reduction
 - Machine and Jobsite Lifespan
 extension
- Over compaction warning

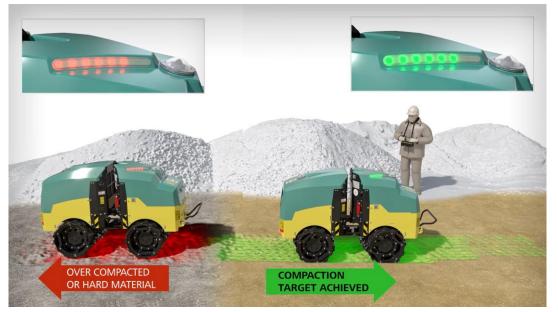
- Advanced system with compaction target setting and laboratory tests correlation
- Intuitive system setting via machine display
- Machine control of:
 - Autonomous Vibration setting Amplitude and Frequency
 - Machine speed Guiding
 - Temperature range Control
- Jobsite efficiency improvement:
 - Time & Fuel economy
 - CO2 reduction
 - Re-work costs reduction
 - Machine and Jobsite Lifespan extension
 - Less Laboratory visits on jobsite
- Double jump warning preventing Machine and Surface damage



Bridge compaction

- 1. Exciter starts rotation with 0% eccentricity and reach 50Hz (passing of dangerous resonance frequency ~17Hz at **Zero Amplitude**)
- 2. Only then Increases eccentricity up to 100% and generate Vibration


amaac.org.mx


del Asfalto, A.C.

- Relative system measures Value of height of
- Drum´s jump and via Fourier´s analyze displays the **"% value**" (non-dimensional value)
- Sufficient for Compaction progress indication, but not for quality laboratory correlation

@AMAACmx

(<u>o</u>)

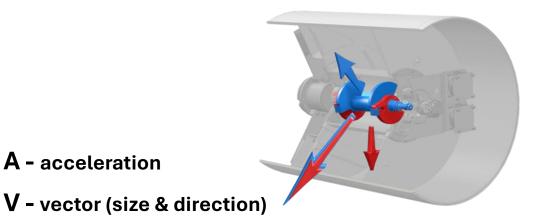
• Measurement process:

Relative value

•

- Drum Acceleration sensor
- CPU with Display unit

amaac.org.mx

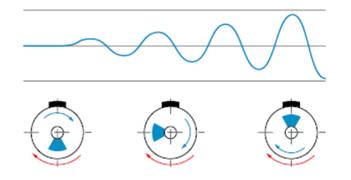


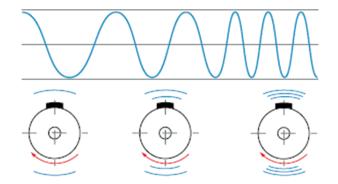
Absolute value

Absolute compaction measurement works ٠ according to the plate bearing test (Gyratory test) by evaluating the calculated transmitted compaction energy versus the vibratory drum 's acceleration - result is MN/m

- Measurement process: ٠
 - Drum Acceleration sensor •
 - Sensor of Position of eccentric mass •
 - Frequency sensor •
 - Machine Speed sensor •
 - CPU with Display unit •

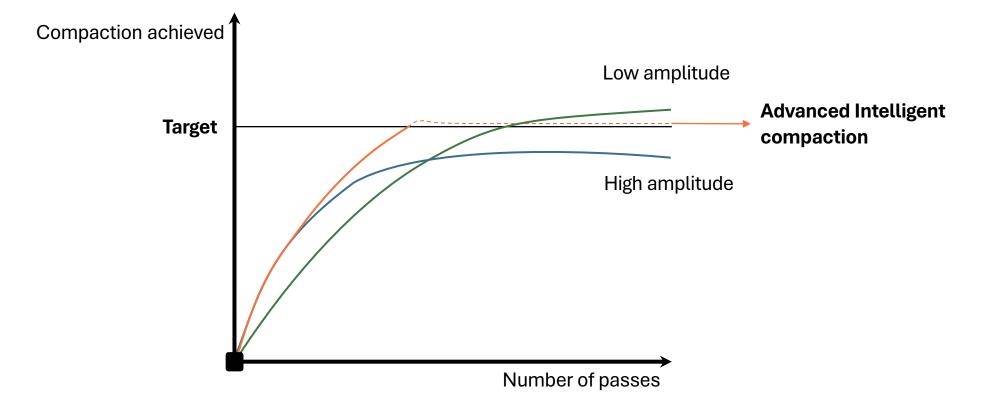
A - acceleration





Amplitude control

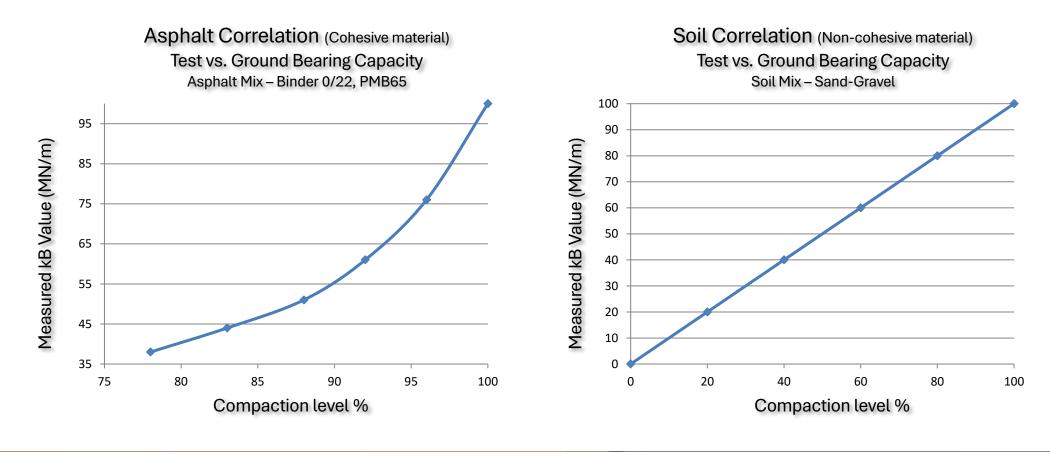
- Sensor of eccentric force setup (Gearbox) needed
 - the effective Amplitude is automatically reduced or increased by step less positioning of Eccentric weights in the vibration unit of the drum



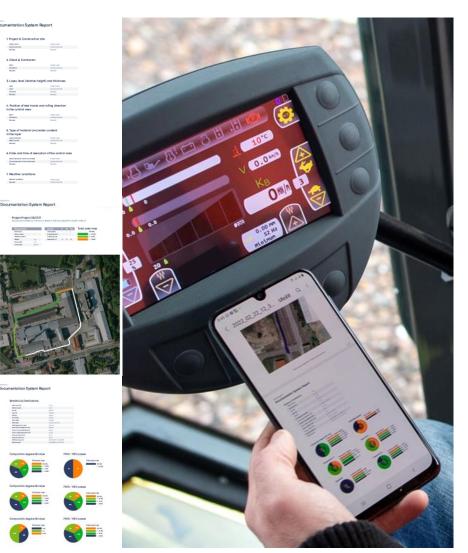
- Frequency control
- Frequency sensor & Machine Speed sensor needed
 - the Frequency is automatically adjusted by varying the RPMs of the vibratory shaft.

@AMAACmx

 (\mathbb{X})



- Value in MN/m corresponds with the static and dynamic plate loading test (defined force/load; defined loading area) and correlates to the Proctor evaluation
- Correlation examples:



Basic ۲

Job-site documentation of compaction results ٠ measured by **basic** systems can be also combined with GPS position for precise localization

Possible Functions/Features: ٠


- Recording jobsite machine passes and compaction • progress with GPS position
- Jobsite visualization on Maps
- Compaction statistics downloadable with for • example bluetooth connection to the mobile app.
- Report customization available, CSV data avalable ٠ for further analyses.

Advanced GPS & cloud solutions

- Live update
- Multiple machines cooperation / Asphalt mixing plant / Truck / Paver / Roller
- Advanced reporting
- in-time comparison with the project assignment
- Independent on machine type
- Merged visualization of compaction process (Operator can see Compaction results of all Machines in process)

@AMAACmx

TCO / year USD 93.000 Total cost of ownership per year - Roller (life spam 10 years) Maintenance, USD 6,000, ~ 90% of the costs are influenced by machine usage ٠ 6% Considering Investment to full advanced intelligent • **Compaction USD 20 000 Reduction from 7 Reduction from 7 Reduction from 7** passes to 4 passes passes to 5 passes passes to 6 passes Reduction of time/costs - 42% - 28% - 15% Saving per year USD 39.000 USD 26.000 USD 14.000 Return on investment < 1 year < 1 year ~ 2 years Investment, USD 8,000, **9%**

¡Muchas gracias!

Jan Formánek

Commercial & Product management

Jan.formanek@ammann.com

